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Abstract

An analytical, parametric study of the attenuation 
bending boundary layers or  edge effects in balanced 
unbalanced, symmetrically and unsymmetrically lamina
ed thin cylindrical shells is presented for nine contemp
rary material systems.  The analysis is based on the lin
Sanders-Koiter shell equations and specializations to 
Love-Kirchhoff shell equations and Donnell’s equation
are included.  Two nondimensional parameters are ind
tified that characterize and quantify the effects of lamina
orthotropy and laminate anisotropy on the bending boun
ary-layer decay length in a very general and encompass
manner.

A substantial number of structural design technolo
results are presented for a wide range of laminated-co
posite cylinders.   For all the laminate constructions co
sidered, the results show that the differences betw
results that were obtained with the Sanders-Koiter sh
equations, the Love-Kirchhoff shell equations,  and Do
nell’s equations are negligible.  The results also show t
the effect of anisotropy in the form of coupling betwee
pure bending and twisting has a neglible effect on the s
of the bending boundary-layer decay length of the b
anced, symmetrically laminated cylinders considere
Moreover, the results show that coupling between the v
ious types of shell anisotropies has a negligible effect
the calculation of the bending boundary-layer dec
length in most cases.  The results also show that in so
cases neglecting the shell anisotropy results in undere
mating the bending boundary-layer decay length and
other cases it results in an overestimation.

Primary Symbols

a12, a22, a26, b21 inverted stiffness expressions defined in
Appendix C

, , ,   modified inverted stiffness expressions
defined in Appendix B

A, A0 nondimensional anisotropy parameters

 a12  a22  a26  b 21
1
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A11, A12, A16, laminate membrane stiffnesses
A22, A26, A66 

, ,  modifed laminate stiffnesses defined in
Appendix B

B11, B12, B16, laminate membrane-bending coupling
B22, B26, B66 stiffnesses

,  modifed laminate stiffnesses defined in
Appendix B

C1  first-order correction factor for 
anisotropy parameter 

d, d 0 attenuation or decay lengths
D11, D12, D16, laminate bending stiffnesses
D22, D26, D66 

e, e0 stiffness coefficients
E1, E2 major and minor principal lamina

moduli, respectively
G12  lamina shear modulus
h, L cylinder wall thickness and length
Mx, Mθ, Mxθ axial and circumferential bending and

twisting stress resultants, respectively
Nx, Nθ, Nxθ axial, circumferential, and shear

membrane stress resultants, respective

O nondimensional orthotropy parameter
P(x) loading function appearing in bending

boundary-layer differential equation
Qx, Qθ transverse-shear stress resultants
R cylinder radius
Q, S, T constant coefficients of bending 

boundary-layer differential equation

  modified shear stress resultant defined 
Appendix B

U strain-energy density
w normal-displacement component
x axial coordinate of cylinder
ε  attenuation-length tolerance parameter

, , axial, circumferential, and shear
membrane strains, respectively

θ  circumferential, angular coordinate

, ,  axial and circumferential bending and
twisting strains, respectively

µ  constant defining different shell theories
ν12  lamina major Poisson’s ratio
φ  lamina fiber angle

 A16  A26  A66

 B16  B26

T

εx
o εθ

o
  γxθ
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κx
o κθ
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  κxθ
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Introduction 

The term, "bending boundary layer," refers to lo-
calized zones of bending stresses and deformations that
appear in practically every type of thin shell structure.1

Bending boundary layers are caused by edge support
conditions; by localized mechanical loads, heating, or
cooling; and by abrupt changes in stiffness, such as that
caused by a cutout, a crack, or a stiffener.  All of these
effects may be real concerns in a given preliminary de-
sign for an advanced aerospace vehicle made of laminat-
ed-composite materials.  Thus, it is useful to have
nondimensional parameters that characterize the effects
of shell geometry and laminate orthotropy and anisotro-
py on the extent of bending boundary layers and that can
be used to help guide the development of a design.  For
example, an optimal design for a pressure vessel might
be one that exploits the membrane load-carrying action
of a shell and minimizes zones of local bending stresses.
Meaningful nondimensional parameters could be used at
the preliminary design stage to identify families of lami-
nates and material systems that exhibit relatively small
bending boundary layers.  Moreover, a meaningful esti-
mate of the size of a bending boundary layer in a shell is
very useful for determining an adequate first-approxima-
tion finite-element model for a complex shell structure.
Without a proper understanding of the extent of a bend-
ing boundary layer, it is possible to have a finite-element
model that could miss a significant part of the structural
response in a region where failures are often initiated by
high interlaminar stresses.  Furthermore, apriori knowl-
edge of the extent of bending boundary layers is useful in
determining the instrumentation locations in structural
verification tests or in material characterization tests.2  In
addition, knowledge of how laminate construction af-
fects the extent of a bending boundary layer is useful for
understanding how nonlinear prebuckling deformations
affect the buckling behavior of cylindrical shells.

Studies of the behavior of axisymmetric, bending
boundary layers in right-circular, cylindrical shell struc-
tures made of orthotropic or anisotropic materials and
with finite length have been presented, to at least some
extent, in Refs. 1 through 13.  In the discussion that fol-
lows, reference is made to unbalanced and balanced lam-
inates that are either symmetrically or unsymetrically
laminated.  Herein, the term unbalanced laminate is used
to indicate that coupling between pure extension or con-
traction and shearing is present in a laminate.  The term
unsymmetric laminate is used to indicate coupling be-
tween any of the components of bending action with any
of the components of membrane action.  A fully anisotro-
pic laminate would include both of these types of anisot-
ropy in addition to the anisotropy that is manifested by
coupling between pure bending and twisting action that

is sometimes exhibited by balanced, symmetric lam
nates.

In Ref. 1, an analysis is presented and an express
for the attenuation or decay length of the bending boun
ary layer for a specially orthotropic cylinder that is su
jected to edges loads, internal pressure, and heatin
given.  These equations, and the accompanying resu
are based on the linear Love-Kirchhoff shell equation
In Ref. 3, an analytical solution that is based on Do
nell’s simplifications to the linear Love-Kirchhoff shel
equations is given for fully anisotropic cylinders that a
subjected to lateral pressure and edge loads.  Results
show the effect of laminate anisotropy on the edge m
ment are presented for a clamped two-ply shell that
subjected to internal pressure.  In addition, a discuss
is presented that suggests that solutions that are base
Donnell’s equations should be accurate for lamina
that are not highly anisotropic.   An analytical study 
bending boundary layers in unbalanced, symmetrica
laminated cylinders, that is also based on Donne
equations, is presented in Ref. 2.  The aim of this stu
was to determine a suitable gage section in a laminat
composite tube that is to be used for a material charac
ization test.   Results are presented for unidirectional, 
lical-wound tubes.

An analytical solution for bending boundary layer
in unbalanced, symmetrically laminated and balance
unsymmetrically laminated circular cylindrical shell
that are subjected to internal pressure and thermal lo
is presented in Ref. 4.  The solution is also based on D
nell’s linear equations and numerical results are prese
ed for filament-wound cylinders made of heat-treat
carbon-carbon material.  A study that focuses mainly 
prebuckling deformations, with bending boundary la
ers, in homogeneous, orthotropic and unsymmetrica
laminated cross-ply cylinders that are subjected to ax
compression loads and lateral pressure loads is prese
in Ref. 5.  The effects of the bending boundary layers 
the buckling response are examined for several lamin
constructions, but the general effects of the laminate c
struction on the extent the boundary layers are not d
cussed.   

A pair of complex conjugate, fourth-order equa
tions that are based on Flugge’s correspondi
equations14 and that can be solved in closed form are d
rived for specially orthotropic, circular cylindrical shell
in Ref. 6.  Moreover, eigenfunction solutions are prese
ed that include the solution for the axisymmetric bendi
boundary layer and several simplifed equations are p
sented and their relative accuracy is analyzed.  In Ref
a study of bending boundary layers in transversely is
tropic circular cylindrical shells is presented.  This stud
examines the attenuation characteristics of bend
2 
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boundary layers by applying an asymptotic method to the
linear, three-dimensional elasticity equations, and pre-
sents order-of-magnitude estimates for the stresses and
displacements for a wide range of ratios of the two prin-
cipal elastic moduli.   In Ref. 8, an analytical solution for
an unbalanced, unsymmetrically laminated circular cy-
lindrical shell that is subjected to internal pressure is  pre-
sented that is based on a variant of the Love-Kirchhoff
shell theory, which uses an expression for the change in
surface twist that was given by Timoshenko.  Numerical
results are also presented for a two-ply shell that demon-
strate the coupling effects of the shell anisotropies.  

The bending boundary layers of an unbalanced, un-
symmetrically laminated circular cylindrical shell that is
subjected to axial compression, torsion, or thermal load-
ing are investigated in Ref. 9.  Results are also presented
that demonstrate the coupling effects of the shell
anisotropies.  In addition, results are presented for two
more conventional unsymmetric laminates and a typical
quasi-isotropic laminate.  In Refs. 10 and 11, bending
boundary layers are also examined for balanced, sym-
metrically laminated and balanced, unsymmetrically
laminated cylindrical shells, in the context of nonlinear
prebuckling deformations that occur as a result of com-
pression and thermal loads.  In particular, the effects of
laminate stacking sequence on the extent and character
of the bending boundary layers are presented for two
groups of three similar laminates. Two of the laminates
are unsymmetric.  In Ref. 12,  a linear analysis is present-
ed that focuses mainly on balanced, symmetrically lami-
nated cylinders, and an expression is given for the length
of the bending boundary layers near the cylinder ends
that is based on the Love-Kirchhoff shell equations.

Most recently, Goldenveizer’s static-geometric du-
ality principle15 has been used in Ref. 13 to reduce the
Sanders-Koiter equations16,17 for fully anisotropic, right-
circular cylindrical shells to two coupled fourth-order
equations that use a stress and a curvature function as the
unknown, primary field variables.  The reduction is done
by adding certain negligibly small terms to the stress-
strain relations, which are intrinsically in error because
they must be established experimentally.  The approach
demonstrates how the static-geometric duality principle
can be used to reduce greatly the amount of algebra need-
ed to obtain results.  Eigenfunction solutions are also pre-
sented for specially orthotropic cylinders that are in
agreement with corresponding results presented in Ref.
6.  Moreover, asymptotic formulas that can be used to de-
termine axisymmetric bending boundary layer attenua-
tion lengths and the decay of other unsymmetric, self-
equilibrated edges loads are given.

With the exception of Ref. 13, explicit expressions
for estimating the size of axisymmetric bending bound-

ary layers in fully anisotropic, right-circular cylinders ar
not found in the literature.  Moreover, there appears to
even fewer results for laminated-composite shells ma
of contemporary material systems and essentially 
substantial parametric studies.  The present paper foc
es on developing meaningful estimates of attenuat
lengths of bending boundary layers in balanced and 
balanced, symmetrically and unsymmetrically laminat
circular cylinders.  The analysis is based on the line
Sanders-Koiter shell equations and contains the Lo
Kirchhoff shell equations1 and Donnell’s equations1 as
special cases, and is somewhat similar to the analy
presented by Reuter4 and Chaudhuri, et. al.8  With these
equations, explicit expressions are obtained and non
mensional parameters are presented that characterize
effects of cylinder geometry and laminate constructi
on the size of a bending boundary layer in a very gene
manner.  In particular, generic design curves are pres
ed that use the nondimensional parameters to show
effects of laminate orthotropy and anisotropy on the 
tenuation length in a concise and encompassing man
In addition, values of these parameters are presented
a very wide range of orthotropic and anisotropic lamina
constructions.  Also, differences in the results that we
obtained in the present study by using the Sanders-Ko
shell equations, the Love-Kirchhoff shell equations, a
Donnell’s equations are discussed.

Analysis

The ordinary differential equation that governs th
axisymmetric bending behavior of a right-circular cylin
der that is subjected to edge loads or displacements 
surface tractions is obtained by first specializing the li
ear Sanders-Koiter shell equations, that are given in A
pendix A, for axial symmetry.  For the equation
presented herein,  x  and θ  denote the axial and circum-
ferential coordinates of a right-circular cylinder, respe
tively, and the specialization to axial symmetry 
obtained by eliminating all terms in the equations that a
differentiatied with respect to the circumferential coord
nate, θ.  The resulting set of equations for axisymmetr
behavior are given in Appendix B. The ordinary diffe
ential equation that governs the axisymmetric bendi
behavior of a right-circular cylinder that is subjected 
edge loads or displacements and surface tractions is
rived in Appendix B and is given by

                (1)

where S, Q, and P(x) are defined in Appendix B by E
(B55), (B56), and (B57), respectively, and w(x) is th
radial deflection that is positive-valued when outwar

  d4w
dx4 + 4Sd2w

dx2 + 4Qw = P(x)
3 
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The coefficients of Eq. (1) depend on the subscripted A,
B, and D constitutive terms of classical Love-Kirchhoff-
type laminated shell theory (e.g., see Ref. 18, pp. 190-
202) and the radius of the cylinder middle surface, R.

To determine the specific form of the solution to
Eq. (1), it is useful to examine the positive-definiteness
conditions on the strain-energy density function.  The
strain energy density function for this problem is given
by 

     (2)

where Nx, Nθ, and Nxθ are the membrane stress result-

ants; Mx and Mxθ are bending stress resultants; , ,

and  are the middle-surface membrane strains; and

 and  are are middle-surface bending strains. By
using Eqs. (B22), (B23), and (B28), the strain-energy
density function is expressed as

             (3)

The strain energy density is expressed in terms of the
strains and constitutive terms by using the constitutive
equation given by Eq. (B29); that is,

       (4)

The stiffness terms in Eq. (4) that have overbars are
defined by Eqs. (B31) - (B35) and are functions of the
shell wall thickness-to-radius parameter, h/R.  By
enforcing positive definiteness of the strain energy den-
sity function (e.g., see Ref. 19), the requirement that the

diagonal terms  A11, A22, , and  D11  be positive-val-
ued is obtained.  Moreover, the following determinants
are positive valued

              (5)

  (6)

Likewise, positive definiteness of the strain energy den-
sity function also requires that the determinant of the

constitutive matrix in Eq. (4) be positive-valued.  More
over, by rearranging the strain energy density functi
into the form

       (7)

the following additional positive-definiteness conditio
is obtained

             (8)

The homogeneous solution for Eq. (1) involves th
square root of the quantity  Q - S2.  By using Eqs. (B55)
and (B56), this quantity is given by

                          (9)

Substituting Eqs. (B41) - (B43) into Eq. (9) and simpl
fying, the quantity  Q - S2  is found to be given by

              (10)

It follows logically, that  Q - S2 > 0  because the posi-
tive-definiteness of the strain energy density functi
requires that the determinant in Eq. (10) be positive v
ued.  Moreover,  Q - S2 > 0  implies that  Q > 0, and  Q >

0 implies that .  Equations (6), (8), and (B43

indicate that  C3 > 0.  Thus,  yields the condition

that  C1 = D11e > 0 (see Eqs. (B49) and (B50)).  Becaus

D11 > 0, e > 0.  To enunciate the positive valuedness 
Q, it is convenient to introduce the expression

                    (11)

such that  T2 - S2 > 0, and to express Eq. (1) as

            (12)

Equation (12) is a linear, fourth-order, nonhomog

   2U = Nxεx
o + Nθεθ

o + Nxθγxθ
o + Mxκ x

o + Mxθκ xθ
o

εx
o εθ

o

  γxθ
o

  κ x
o

  κ xθ
o

   2U = Nxεx
o + Nθεθ

o + Tγxθ
o + Mxκx

o

   

U = 1
2

εx
o

εθ
o

γxθ
o

κ x
o

T A 11 A 12 A 16 B11

A 12 A 22 A 26 B12

A 16 A 26 A 66 B16

B11 B12 B16 D11

εx
o

εθ
o

γxθ
o

κ x
o

 A 66

 A 11 A 12

A 12 A 22
= A 11A 22 – A 12

2 > 0

 A 11 A 12 A 16

A 12 A 22 A 26

A 16 A 26 A 66

= A 11A 22 – A 12
2 A 66 –

 A 11A 26
2 – A 22A 16

2 + 2A 12A 16A 26 > 0

   

U = 1
2

εx
o

γxθ
o

εθ
o

κ x
o

T A 11 A 16 A 12 B11

A 16 A 66 A 26 B16

A 12 A 26 A 22 B12

B11 B16 B12 D11

εx
o

γxθ
o

εθ
o

κ x
o

 A 11 A 16

A 16 A 66

= A 11A 66 – A 16
2 > 0

 Q – S2 =
4C1C3 – C2

2

16C1
2

 

Q – S2 = 1
4C1

2

A 11 A 12 A 16 B11

A 12 A 22 A 26 B12

A 16 A 26 A 66 B16

B11 B12 B16 D11

 C3

C1
> 0

 C3

C1
> 0

  T2 = Q = 1
4R2a22D11e

  d4w
dx4 + 4Sd2w

dx2 + 4T2w = P(x)
4 
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neous ordinary differential equation with constant coef-
ficients.  The characteristic equation of Eq. (12) is given
by

                    (13)

Using the knowledge that  T2 - S2 > 0, the roots of the
characteristic equation are obtained from the quadratic
formula; that is,

             (14)

where .  Solution of this equation for λ yields
four roots of Eq. (13) that are pairs of complex conju-
gates that are given by

             (15)

The homogeneous solution of Eq. (12) can be writ-
ten as follows

  (16a)

where .  The symbols  K1, K2, K3, and K4 are
real-valued constants that are determined from the
boundary conditions given by Eqs. (B18) and (B19).
The solution given by Eq. (16a) represents a damped,
oscillatory response that decays from each end of the
cylinder.  The regions near the edges of the cylinder,
where the amplitude of wH(x) is the largest are called the
bending boundary layers.  All response quantities that
exhibit bending boundary layers involve derivatives of
Eq. (16a) and can be expressed in the general form

  (16b)

where  F1  through  F4  are constants.
When the length of the bending boundary layers are

less than half of the cylinder length, which is typical,
Eqs. (16) can be partitioned into one part that applies to
the edge x = 0 and the other that applies to the edge x =
L.  The response quantities for the region near x = 0 are
obtained by setting   F3 = 0  in Eqs. (16).  Similarly, the
response quantities for the region near x = L are obtained
by setting  F1 = 0  in Eqs. (16). 

Formulas for the Attenuation Length

Formulas for the attenuation or decay length of t
bending boundary layers are obtained by first noting th
the response quantities for the region near x = 0 

bounded by the two functions    and  that th
response quantities for the region near x = L are boun

by the two functions  .  Let  d  denote the
length for which the solution attenuates or decays to
value of ε times the amplitude F1 or F3.  A reasonable es-
timate of the attenuation length or decay length  d   is ob-
tained by  replacing  x  and  (L - x) with  d   in the
exponential terms of Eq. (16b), and by noting that t
amplitude of w(x) is attenuated by the exponential term
Thus, the attenuation length or decay length is given

 which yields

                 (17)

By using Eqs. (B55) and (11), Eq. (17) is expressed a

                           (18)

where    is the attenuation length, in which aniso
ropy is neglected, that is given in nondimensional for
by

                        (19)

The symbol  h  is the shell wall thickness, and  O  and  A
are nondimensional orthotropy and anisotropy param
ters or factors, respectively, that are given by

                (20a)

 (20b)

where the symbols in these equations are defined
Appendix B.  

Other useful forms of Eq. (20a) are obtained by i
troducing an effective membrane Poisson’s rat

, which is the geometric mean of the tw

Poisson effects associated with the inplane principal 
rection of a homogenized orthotropic material.  By usin

  λ4 + 4S λ2 + 4T2 = 0

   λ2

1,2
= 2 –S ± i T2 – S2

  i = –1

   λ1,2,3,4 = ± T – S ± i T + S

 wH(x) = K1e– T – S x sin[ T + S x + K2] +

 K3e– T – S (L – x) sin[ T + S x + K4]

  x ∈ [0,L]

 F(x) = F1e– T – S x sin[ T + S x + F2] +

 F3e– T – S (L – x) sin[ T + S x + F4]

  ± F1e– T – S x

  ± F3e– T – S (L – x)

   e– T – S d = ε

   d = – lnε (T – S)–1/2 < L
2

   d
Rh

= do

Rh
A

 do

    do

Rh
= – lnε

34 O

  
O =

12 A 11D11

(A 11A 22 – A 12
2 )h2

1/4

  
A =

(A 11A 22 – A 12
2 )

A 11
a22 e

1/4

1 –
b 21

a22D11 e

–1/2

  νm =
A 12

A 11A 22
5 
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this effective membrane Poisson’s ratio, Eq. (20a) is ex-
pressed as

                  (21)

For a single-layer of homogeneous, specially orthotro-

pic material, , A  = 1, and 

                  (22)

which, when substituted into Eq. (19), yields results
identical to the results presented by Kraus1, where the
decay tolerance is given by  ε = e-π.  Likewise, for a sin-
gle-layer of isotropic material with an arbitrary thick-
ness, νm = ν,  A  = 1, and  

                          (23)

A 90%-decay length (ε = .1) that is a good approxima-
tion to the behavior of homogeneous, metallic shells is

given by  .  Applying this formula, for

example, to the Space Shuttle solid rocket booster
described in Refs. 20 or 21 (R = 72 in., h= 0.5 in.) gives

= 0.15 R = 10.8 in.  
It is interesting to note that the differences between

the attenuation lengths that are based on the Sanders-
Koiter, the Love-Kirchhoff, and Donnell’s equations ap-

pear in the coefficient  e  and in the symbols with over-
bars in Eq. (20b) for the anisotropy factor A (see Eqs.
(B22), (B31) - (B35), and (B45) - (B49).  For these equa-

tions, the Sanders-Koiter theory is given by  and

the Love-Kirchhoff theory is given by µ = 1.  Donnell’s
equations are given by µ = 0.  For isotropic and specially
orthotropic cylinders, A  = 1 and the three sets of shell
equations yield identical results.  Similarly, for antisym-
metric cross-ply cylinders (A16 = A26 = D16 = D26 = B16 =
B26 = B12 = B66 = 0) 

   (24)

and the three shell theories yield identical results.

Simplified Formulas for  A

For balanced, symmetrically laminated cylinders,

the only anisotropic constitutive terms are D16 and D26,

and the anisotropy factor is given by   where

              (25)

For thin-shell theories, such as the Sanders-Koiter t

ory and the Love-Kirchhoff theory, .  This resu

suggests that a useful approximation to Eq. (25) and 
anisotropy factor can be obtained from a power ser

expansion for small values of .  This process yields

                (26)

In this expression,   and  .

Thus, the approximate formula for A indicates that for
most practical applications of thin-shell theory, the d
ferences between the three different shell theories c
sidered herein, and the effect of the flexural anisotro
of a general symmetrically laminated cylinder, are neg
gible.

A simplified formula for the anisotropy factor can
be derived for the general expression for A that is given
by Eq. (20b).  For this case, the following power seri

expansions for small values of  are used

                 (27)

             (28)

             (29)

             (30)

           (31)

Substituting Eqs. (27) - (31) into Eq. (20b) and expan
ing the resulting expression in a similar manner yields

            (32)

   
O =

12 D11

A 22h
2(1 – νm

2 )

1/4

  νm = ν12ν21

   
O =

E1

E2(1 – ν12ν21)

1/4

   O = 1
(1 – ν2)4

  do

R = 1.79 h
R

 do

  µ = 3
2

  A = 1 – B11
2

A 11D11

1/4

1 – A 12B11

(A 11A 22 – A 12
2 )(A 11D11 – B11

2 )

–1/2

  A = e4

   
e = 1 –

µ2D16
2

A66D11h
2

h
R

2

1 + µ2 h
R

2 D66

A66h
2

  h
R ≤ 1

20

h
R

   A ≈ 1 –
µ2

4
h
R

2 D16
2

A66D11h
2

  0 ≤ µ ≤ 3
2

  0 ≤ D16
2

A66D11h
2 ≤ 1

h
R

   e = e0 + e1
h
R + e2

h
R

2

+ ⋅⋅⋅

   a12 = a12 + a112
h
R + a212

h
R

2

+ ⋅⋅⋅

   a22 = a22 + a122
h
R + a222

h
R

2

+ ⋅⋅⋅

   a26 = a26 + a126
h
R + a226

h
R

2

+ ⋅⋅⋅

   b 21 = b 21 + b 121
h
R + b 221

h
R

2

+ ⋅⋅⋅

   A = A 0 + A 1
h
R + A 2

h
R

2

+ ⋅⋅⋅
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The coefficient  A2 is a very complicated expression, and

as a result, the following first-order approximation of A
is used herein; that is,

                    (33)

where A0 is the value of Eq. (20b) with µ = 0, which is
the anisotropy factor that corresponds to the use of Don-
nell’s equations.  This expression is given by

  (34)

In this expression, a22 and b21 are obtained from Eqs.
(B45) - (B48) by setting µ = 0 in Eqs. (B31) - (B35).
The expression for  e0  is obtained from Eq. (B49) in a
similar manner.  The term C1  represents a first-order
correction to the results that correspond to Donnell’s
equations and is given by

  (35)

where the terms that appear in Eq. (35) are given in
Appendix C.  In addition, further simplifications to  A0

and  C1  are also presented in Appendix C for unbalanced
and balanced, symmetric laminates and for balanced,
unsymmetric laminates, that include the subclasses of
general antisymmetric laminates, antisymmetric cross-
ply laminates, and antisymmetric angle-ply laminates.
The relative size of C1  and its contribution to Eq. (33)
are examined parametrically in the subsequent section
of the present study.

Results and Discussion

 Equations (18) and (19) form the basis for the para-
metric study presented herein.  In particular, the two
equations isolate the contributions of shell orthotropy
and shell anisotropy to the bending boundary-layer de-
cay length with nondimensional parameters and imply
the generic design-chart representations that are illustrat-
ed in Figs. 1 and 2.  In Fig. 1, generic results are present-
ed that show the nondimensional, 90%-decay length

given by  as a function of the orthotropy pa-

rameter O, for selected values of the anisotropy parame-
ter A.  A 90%-decay length was selected herein to yield
an accuracy that is approximately to within the accuracy
of the experimentally determined material properties, but

other values could be used.
In a manner similar to Fig. 1, Fig. 2  shows the no

dimensional, 90%-decay length as a function of t
anisotropy parameter A, for selected values of the orthot
ropy parameter O.  Results that correspond to balance
symmetrically laminated cylinders are given by a valu
of  A  = 1  and results that correspond to an isotropic sh
wall are indicated in the figures by the filled circle wit
an ordinate value of 1.79.  Overall, these two figures re
resent results that are applicable to a vast range of la
nate constructions, and provide a common basis 
comparison of regular and hybrid laminates made of d
ferent material systems and laminate stacking sequen
In general, the figures show increases in the nondim
sional 90%-decay length with increases in either of t
orthotropy parameter O or the anisotropy parameter A.
In addition, the results in Figs. 1 and 2 clearly indica
the effect of neglecting shell-wall anisotropy on the a
tenuation length of a bending boundary layer.

The actual value of the nondimensional, 90%-d
cay length depends on the particular values of the orth
ropy and anisotropy parameters of a given lamina
Thus, additional results are presented subsequently 
show how the orthotropy parameter O and the anisotropy
parameter A vary with laminate construction.  In particu
lar, values of O and  A  are presented first for balance
and unbalanced symmetrically laminated cylinder
Then, values are presented for balanced and unbalan
unsymmetrically laminated cylinders.  Nine differen
contemporary material systems were used to gene
these results.  These material systems include boron-
minum, S-glass-epoxy, a typical boron-epoxy, AS
3501-6 graphite-epoxy, AS4/3502 graphite-epoxy, IM
5260 graphite-bismaleimide, Kevlar 49-epoxy, IM7
PETI-5, and P-100/3502 pitch-epoxy materials.  The m
chanical properties of these material systems are pres
ed in Table 1 and the nominal ply thickness that was u
is 0.005 in.  

Balanced, Symmetrically Laminated Cylinders

Symmetrically laminated shell walls are characte
ized mathematically by values of zero for the subscript
B terms that appear in the constitutive equation, E
(A15).  In addition, balanced, symmetrically laminate
shell walls do not exhibit coupling between extensio
and shear, which is characterized by  A16 = A26 = 0  in Eq.
(A15).  Shell walls of this class are strictly special
orthotropic for many laminates.  However, for some wa
constructions, balanced, symmetric laminates exhi
anisotropy in the form of coupling between pure bendi
and twisting of the shell wall.  This type of anisotropy 
manifested by nonzero values of the D16 and D26 consti-

   A ≈ A 0 1 + µ C 1
h
R

  
A 0 = (A 11A 22 – A 12

2 )
A 11

a22e0

1/4

1 –
b 21

a22D11 e0

–1/2

  
C 1 =

a22D11e0 a22e1 + a122e0 + 2a22 b 121e0 – b 21e1 – 2a122b 21e0

4a22e0 a22D11e0 – b 21

   d
Rh ε = 0.1
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tutive terms in Eq. (A15).  However, the discussion of
Eq. (26) that has been given herein indicates that this
type of anisotropy is negligible for thin shells and that the
differences between results obtained from the Sanders-
Koiter, the Love-Kirchhoff, and Donnell theories are in-
significant.  Moreover,  A = 1  for this class of laminated-
composite shell walls, and the attenuation behavior is
governed by the nondimensional orthotropy parameter O
that is given by Eq. (20a).  Furthermore, Eqs. (18) and
(19) indicate that the attenuation length is a constant
multiple of the orthotropy parameter that depends on the
attenuation-tolerance parameter ε.  For this case, trends
that are exhibited by O are identical to those exhibited by
the attenuation length based on any value of ε.

Values of the orthotropy parameter O are presented
in Fig. 3 for single-ply, homogeneous, specially ortho-
tropic and isotropic shell walls, with arbitrary thickness,
as a function of the ratio of the principal elastic moduli,
E2/E1.  For these results, the orthotropy parameter is giv-
en by Eq. (22) and is expressed in the following more
convenient form

                   (36)

One curve, that is essentially several coincident curves,
is shown in the figure that corresponds to general results

for .  In addition, specific results for the
nine material systems considered herein and for a typi-
cal aluminum and a steel are indicated in the figure by
the square symbols.  The results in Fig. 3 indicate that
the effect of variations in the major Poisson’s ratio on
the orthotropy parameter O are small compared to the
effect of variations in the ratio of the principal elastic
moduli.  Moreover, the results show that O decreases
rapidly as the ratio of the principal elastic moduli
increases, particularly for values of E2/E1 less than
approximately 0.1, which corresponds to most of the
contemporary orthotropic materials considered herein.
Figure 3 also shows that an isotropic material corre-
sponds to  O 1.

Values of the orthotropy parameter O  for the sin-
gle-ply, homogeneous, specially orthotropic cylinders
investigated by Cheng and He6 were also obtained.  A
comparison of the results obtained in the present study
with the corresponding results of Ref. 6 are presented in
Table 2 for boron-epoxy, glass-epoxy, and graphite-ep-
oxy materials and for the cylinder radius-to-thickness ra-
tio  R/h = 208.311.  Moreover, a range of results is shown
for Ref. 6 which corresponds to various simplifications
that were used in the equations that govern the response.

The actual material properties that were used are give
Ref. 6.  In this table, the quantity used for comparison
given by

                          (37)

which is the real part of the exponent  p  that appears in
the eigenfunction solution used by Cheng and Ho (n =
in Eq. (25) of Ref. 6; see also Eq. (47) of Ref. 13), whi
corresponds to the decay or attenuation of the respo
The orthotropy parameter shown in Eq. (37) is defin
by Eq. (36).  The results in Table 2, show very go
agreement (less than 1% difference) for all three mate
als.  In addition, the results obtained herein that a
shown in Table 2 for the boron-epoxy material are al
in excellent agreement with the corresponding resu
presented by McDevitt and Simmonds.13 

Values of the orthotropy parameter O are presented
in Fig. 4 for multilayered  [(±φ)m]s laminates made from
the nine material systems as a function of the fiber an
φ, which is measured from the x-axis toward the θ-axis.
The results are independent of the stacking seque
number m and show a wide variation in O  with the ma-
terial system.  The results also show, for the most par
wide variation in O with the fiber angle φ and show a re-

duction in O as the fiber angle increases from zero 
ninety degrees.  The largest value (2.93) and the sma
value (0.34) of O  are exhibited by the unidirectiona
laminates made from P-100/3502 pitch-epoxy materi

and correspond to values of  equal to 5.13 a

0.59, respectively.  Moreover, the greatest variation inO
with the fiber angle (approximately 8.7 times) is exhibi
ed by the laminates made from P-100/3502 pitch-epo
material.  The smallest variation is exhibited by the lam
inates made from the boron-aluminum material.

Results are presented in Fig. 5 that show the val
of the orthotropy parameter for [(±45/02)m]s, [(02 /±45)m]s,
[(±45/902)m]s, [(902 /±45)m]s, [(±45/0/90)m]s and [(0/90/
±45)m]s  laminates made of IM7/5260 graphite-bismal
imide material for values of the stacking sequence nu
ber m = 1 to 6.  Values of O  range from approximately
1.53 to 0.64.  These results show that the curves for 
[(±45/02)m]s and [(02 /±45)m]s laminates approach  O 
1.41  as m increases to a value of 6, with the curve for 
[(02 /±45)m]s laminates converging from above and th
other curve converging from below.  The higher valu
of O  for the [(02 /±45)m]s laminates, are attributed to the
higher axial bending stiffness that is obtained by placi
the zero-degree plies at the outer surfaces of the la

   
O =

E2

E1

1 –
E2

E1

ν12
2

–1/4

  0.2 ≤ ν12 ≤ 0.35

≈

  Re(p) = 34

O
R
h

   d
Rh ε = 0.1

≈
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nates, particularly, for the lower values of the stacking
sequence number m.  Similarly, the results in Fig. 5 show
that the curves for the [(±45/902)m]s and [(902 /±45)m]s

laminates approach  O  0.76  as m increases to a value
of 6, with the curve for the [(±45/902)m]s laminates con-
verging from above and the other curve converging from
below.  Likewise, the results in Fig. 5 show that the
curves for the [(±45/0/90)m]s and [(0/90/±45)m]s  quasi-

isotropic laminates approach  O  1.03  as m increases
to a value of 6, with the curve for the [(0/90/±45)m]s lam-
inates converging from above and the other curve con-
verging from below.

Overall, the results in Fig. 5 indicate that the [(±45/
02)m]s and [(02 /±45)m]s laminates exhibit higher values of
the orthotropy parameter than the [(±45/0/90)m]s and [(0/
90/±45)m]s  quasi-isotropic laminates, which exhibit
higher values of the orthotropy parameter than the [(±45/
902)m]s and [(902/±45)m]s laminates.  This trend corre-

sponds to a reduction in the value of O  as the axial bend-
ing and extensional stiffnesses of the laminates decrease. 

Results are presented in Fig. 6 that show the effect
of the nine material systems considered herein on the
orthotropy parameter for the [(02 /±45)m]s laminates.

Values of O range from approximately 1.67 for P-100/
3502 pitch-epoxy material to 1.09 for boron-aluminum
material.  Most of the materials exhibit values of O in the
range of approximately 1.4 to 1.6.  All of the curves show
about the same reduction in O as the stacking sequence
number m increases.

Results similar to those in Fig. 6 are presented in
Fig. 7 that show the effect of the nine material systems
on the orthotropy parameter for the [(±45/0/90)m]s and
[(0/90/±45)m]s  quasi-isotropic laminates.  These results
show a much smaller variation in the orthotropy param-
eter with material system and stacking sequence number
for the quasi-isotropic laminates than for the [(02 /±45)m]s

laminates in Fig. 6.  In particular, values of O for the qua-
si-isotropic laminates range from approximately 1.15 to
1.  The largest values of O in Fig. 7 are exhibited by lam-
inates from P-100/3502 pitch-epoxy material.  More-
over, the results show a larger variation in O with
stacking sequence number for the [(0/90/±45)m]s  lami-
nates than for the [(±45/0/90)m]s laminates.  

Unbalanced, Symmetrically Laminated Cylinders 

Unbalanced, symmetric laminates exhibit anisotro-
py in the form of extensional-shear coupling ( A16 ≠ A26

≠ 0) in addition to flexural anisotropy (D16 ≠ D26 ≠ 0 ).
For these laminates, the value of the anisotropy parame-
ter A  given by Eqs. (20b) and (33) is not equal to unity.

Simplifed expressions for the anisotropy parameter  A0

and the first-order correction factor C1, defined by Eqs.
(33) - (35), are given by Eqs. (C23) and (C24), respe
tively.   Equation (C24) indicates that the value C1 de-
pends on coupling between the membrane and flexu
anisotropies.

Values of the orthotropy parameter O  for [(+φ)2m]s

symmetric, unidirectional laminates for the nine mater
systems considered herein are also presented in Fig
that is, the curves presented in Fig. 4 for the [(±φ)m]s sym-
metric angle-ply laminates are identical to those for t
corresponding [(+φ)2m]s symmetric, unidirectional lami-
nates.  Thus, the  orthotropy behavioral trends for the 
directional laminates are identical to those discuss
previously for the symmetric angle-ply laminates, an
are also independent of the stacking sequence num
m.  

Results for the anisotropy parameter A0 and the
first-order correction factor C1 are shown in Figs. 8 and
9, respectively, for the [(+φ)2m]s symmetric, unidirection-
al laminates with the nine material systems conside
herein and are independent of the stacking seque
number m.  The results in Fig. 8 show a substantial va
ation in  A0 with fiber orientation and with material sys
tem.  The results show that  A0  is the most pronounced
for values of the fiber angle  φ  between approximately
55 deg and 80 deg, and that the contribution of the anis
ropy to the attenuation behavior is essentially insigni
cant (less than 1.05) for values of φ < 25 deg and φ > 85
deg.  Moreover, the largest variation in  A0  with fiber an-
gle is exhibited by the laminates made of the P-100/35
pitch-epoxy material and the smallest variation is exh
ited by the laminates made of boron-aluminum materi
Values of A0 range from approximately 1.42 for the max
imum point on the curve for the P-100/3502 pitch-epo
material to a value of 1.

The results shown in Fig. 9 for the first-order co
rection factor C1  for the [(+φ)2m]s symmetric, unidirec-
tional laminates indicate a substantial relative variati
in C1 with fiber orientation and with material system, bu
all of the magnitudes of C1 are less than approximately
0.45.  Moreover, the magnitude of C1 is less than approx-
imately 0.2 for all of the materials except the P-100/35
pitch-epoxy material.  For the upper bound of thinness
thin-shell theory, given by h/R = 1/20, the contribution o
C1 to the anisotropy factor defined by Eq. (33) is prac
cally negligible.  Equation (C24) indicates that the insi
nificance of C1 means that the coupling of the membran
and flexural anisotropies are negligible for these lam
nates.  The insignificance of C1  is illustrated and verified
in Fig. 10 for the [(+φ)2m]s symmetric, unidirectional

≈

≈
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laminates made of IM7/5260 graphite-bismaleimide ma-
terial (black curves) and made of P-100/3502 pitch-ep-
oxy material (gray curves), for h/R = 1/20.  The finely
dashed curves shown in Fig. 10 correspond to 90%-de-
cay lengths for which the anisotropy is neglected.  In
contrast, the solid curves and the coarsely dashed gray
curve include the effect of the membrane anisotropy and
are shown for values of µ = 0, 1, and 1.5.  For these val-
ues, results that correspond to the Sanders-Koiter theory

and the Love-Kirchhoff theory are given by  and

µ = 1, respectively.  Results that correspond to Donnell’s
equations are given by  µ = 0.   The solid curves in Fig.
10 for µ = 1 and 1.5 are based on the exact solution that
uses Eq. (20b) for the anisotropy factor.  The correspond-
ing curves that are based on the approximate formula for
the anisotropy parameter that is given by Eq. (33) are
identical.  The solid curves and the coarsely dashed gray
curve indicate that varying µ yields a small effect, which
implies that all three shell theories yield essentially the
same results and that   A  A0   for the [(+φ)2m]s symmet-
ric, unidirectional laminates.  Comparing the solid and
finely dashed curves in Fig. 10 also indicates that ne-
glecting the membrane anisotropy underestimates the
bending boundary-layer decay length, by as much as ap-
proximately 31% and 21% for shell walls made of P-100/
3502 pitch-epoxy and IM7/5260 graphite-bismaleimide
materials, respectively. 

Values of the orthotropy parameter O for [(+452/0/
90)m]s and [(0/90/+452)m]s laminates made of the nine
material systems considered herein are also presented in
Fig. 7.  More specifically, the values of O for these lam-
inates are identical to the values for the corresponding
quasi-isotropic laminates.  Results for the anisotropy pa-
rameter A0 defined by Eq. (34) are shown in Fig. 11 for
[(+452/0/90)m]s and [(0/90/+452)m]s laminates made of
the nine material systems considered herein.  The results
in Fig. 11 show no significant variation in A0 with the
stacking sequence number m, and only a slight variation
(less than approximately 9%) with material system.  Val-
ues of A0 range between approximately 1.1 and 1.  Cor-
responding results for the first-order correction factor C1

defined by Eq. (35), that are not shown herein, were ob-
tained that indicate that all of the values of C1  for the
[(+452/0/90)m]s and [(0/90/+452)m]s laminates are less
than approximately 0.1.  These values indicate that the
contribution of C1 to the anisotropy factor defined by Eq.
(33) is practically negligible.  Thus,  A  A0 for these
laminates.  The values of A0 shown in Fig. 11 suggest that
neglecting the anisotropy would, at most, underestimate
the bending boundary-layer decay length by approxi-
mately a 10%.  The insignificance of C1 also means that

the coupling of the membrane and flexural anisotrop
are unimportant with regards to the primary effect of t
individual shell anisotropies that is captured by the p
rameter  A0.  

Balanced, Unsymmetrically Laminated Cylinders

Balanced, unsymmetric laminates may, in gener
exhibit anisotropy in the form of coupling between pu
bending and twisting (D16 ≠ D26 ≠ 0 ) and coupling be-
tween membrane and bending action, which is manife
ed by nonzero values for any of the subscripted B-ter
in Eq. (A15).  These laminates do not, however, exhi
extensional-shear coupling ( A16 = A26 = 0).  For the un-
symmetric laminates that are discussed subsequently
first ply in the stacking sequence is the innermost ply
a cylinder.  Simplifed expressions for the anisotropy p
rameter A0 and the first-order correction factor C1, de-
fined by Eqs. (33) - (35), are given by Eqs. (C27) a
(C29), respectively.  Equations (C28) and (C29) indica
that the value C1 depends on coupling between the flex
ural anisotropy and the anisotropy caused by unsymm
ric lamination.

     Results for regular, antisymmetric angle-ply lami-
nates are shown in Figs. 4 and 12-16.  In particular, v
ues of the orthotropy parameter O  for [(±φ)m]T  
unsymmetric laminates made of the nine material sys
tems considered herein are also presented in Fig. 4; t
is, the orthotropy-parameter curves presented in Fig. 
for the [(±φ)m]s symmetric angle-ply laminates are also
identical to those for [(±φ)m]T  unsymmetric laminates.  
Thus, the  orthotropy behavioral trends for the [(±φ)m]T  
unsymmetric laminates are identical to those discusse
previously for the corresponding symmetric angle-ply 
laminates, and are also independent of the stacking 
sequence number m.  

Results for the anisotropy parameter A0  defined by
Eq. (C27) are shown in Fig. 12 for 2-ply [±φ]T  unsym-
metric laminates made of the nine material systems c
sidered herein.  The results in Fig. 12 show a substan
variation in A0 with fiber orientation and with material
system, and show that A0 is the most pronounced for val
ues of the fiber angle φ between approximately 15 deg
and 60 deg.  Moreover, the largest variation in A0 with fi-
ber angle is exhibited by the laminates made of the
100/3502 pitch-epoxy material and the smallest variati
is exhibited by the laminates made of boron-aluminu
material.  Values of A0 range from approximately 0.75
for the minimum point on the curve for the P-100/350
pitch-epoxy material to a value of 1.  The results in F
13 show the variation in  A0 with the fiber angle φ  and
the stacking sequence number m  for  [(±φ)m]T  unsym-

  µ = 3
2
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metric laminates made of the P-100/3502 pitch-epoxy
material.  These results show a rapid decline in the im-
portance of A0, that is manifested by the curve moving
closer to A0 = 1, as the stacking sequence number in-
creases.  For  m = 2, 0.95 < A0 < 1.

Results for the first-order correction factor C1  are
shown in Fig. 14 for 2-ply [±φ]T  unsymmetric laminates
made of the nine material systems considered herein.
The results in Fig. 14 also show a substantial variation in
C1 with fiber orientation and with material system.  How-
ever, the maximum magnitude of  C1  is less than 0.07 for
all of the material systems.  Results are presented in Fig.
15 that  show the variation in  C1 with the fiber angle φ
and the stacking sequence number m  for  [(±φ)m]T  un-
symmetric laminates made of the P-100/3502 pitch-ep-
oxy material.  These results show significant reductions
in C1 with an increase in the stacking sequence number.  

Overall, the results in Figs. 14 and 15 indicate that
the contribution of C1 to the anisotropy factor defined by
Eq. (33) is negligible for the upper bound of thinness giv-
en by h/R = 1/20, which means that  A  A0.  Thus, the
results in Fig. 12 for the two-ply  [±φ]T  unsymmetric
laminates indicate that neglecting the shell anisotropy
overestimates the bending boundary layer, by as much as
approximately 33% and 22%  for shell walls made of P-
100/3502 pitch-epoxy and IM7/5260 graphite-bismale-
imide materials, respectively.  The insignificance of C1

also means that the coupling of the flexural anisotropy
and the anisotropy caused by unsymmetric lamination is
unimportant with regards to the primary effect of the in-
dividual shell anisotropies.  The insignificance of C1 is il-
lustrated in Fig. 16 by the gray and by the black curves
for the laminates made of P-100/3502 pitch-epoxy and
IM7/5260 graphite-bismaleimide materials, respective-
ly.  The solid black and gray curves are for the upper
bound of thin-shell theory that is given by h/R = 1/20.
The finely dashed curves shown in the Fig. 16 corre-
spond to 90%-decay lengths for which the anisotropy is
neglected.  In contrast, the solid curves include the effect
of the shell anisotropy and are shown for values of µ = 0,
1, and 1.5.  The solid curves for µ = 1 and 1.5 are based
on the exact solution that uses Eq. (20b).  The corre-
sponding curves that are based on the approximate for-
mula for the anisotropy parameter that is given by Eq.
(33) are identical.  The solid curves indicate no signifi-
cant effect of varying µ, which implies that all three shell
theories yield essentially the same results for the [±φ]T

unsymmetric laminates.  For  [(±φ)m]T  unsymmetric lam-
inates with  m > 1 and made from any of the nine material
systems considered herein, the results in Figs. 12 through
15 indicate that neglecting the shell-wall anisotropy will
have a small effect on the calculation of the bending

boundary-layer decay length.
Values of the orthotropy parameter O and the

anisotropy parameter A0 for (0p /90q)T unsymmetric
cross-ply laminates are shown in Figs. 17 and 18 for 
nine material systems considered herein and as a fu
tion of the percentage of zero-degree plies.  For this cl
of laminates, Eq. (20b) simplifies to Eq. (34); that is, A =
A0.  This simplification means that the anisotropy param
eter is independent of µ, which means that all three of the
shell theories considered herein yield identical results

The results in Fig. 17 show a large variation in O
with the percentage of zero-deg plies for most of the m
terial systems.  In addition, the results show a large va
ation in O with material system for the laminates that a
dominated by ninety-deg plies (less than approximat
10% zero-deg plies) and by zero-deg plies ( more th
approximately 80% zero-deg plies).  Values of O vary the
most for laminates made of P-100/3502 pitch-epoxy m
terial, with values that range from approximately 0.3 
2.93.  Most of the materials exhibit values of O in the
range of approximately 0.5 to 2.1.  

The results in Fig. 18 also show a large variation
A0 with the percentage of zero-deg plies for most of t
material systems, and show a large variation with ma
rial system for laminates with less than 70% zero-d
plies.   Moreover, the results show that A0 is the most pro-
nounced (most different from a value of 1) for laminat
with approximately 15% to 30% zero-deg plies.  Th
largest variation in A0 with percentage of zero-deg plie
is exhibited by the laminates made of the P-100/35
pitch-epoxy material and the smallest variation is exh
ited by the laminates made of boron-aluminum materi
Values of A0 range from approximately 0.57 for the min
imum point on the curve for the P-100/3502 pitch-epo
material to a value of 1.  Thus, in some cases neglec
the shell wall anisotropy overestimates the bendi
boundary layer, by as much as approximately 75% fo
shell wall made of P-100/3502 pitch-epoxy materia
This result is illustrated in Fig. 19 by the gray curve
Similar results are presented in Fig. 19 for (0p /90q)T un-
symmetric cross-ply laminates made of IM7/5260 grap
ite-bismaleimide material (black curves).  The sol
black and gray curves include the effect of the sh
anisotropy and the finely dashed curves shown in the f
ure correspond to 90%-decay lengths for which t
anisotropy is neglected.  The results in Fig. 19 show t
including the effect of anisotropy is particularly impor
tant for laminates with less than approximately 70
zero-deg plies.

Unbalanced, Unsymmetrically Laminated Cylinders

 Unbalanced, unsymmetric laminates may, in ge

≈
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eral, exhibit full anisotropy in the form of coupling be-
tween pure bending and twisting (D16 ≠ D26 ≠ 0 ) and
coupling between membrane and bending action, which
is manifested by nonzero values for any of the subscript-
ed B-terms in Eq. (A15), and extensional-shear coupling
( A16 ≠ A26 ≠ 0).  The expressions for the anisotropy pa-
rameter A0 and the first-order correction factor C1 that are
given by Eqs. (C2) - (C22) indicate that A0 exhibits cou-
pling between the membrane anisotropy and the anisot-
ropy that is caused by unsymmetric lamination, and that
C1 exhibits coupling between all three types of anisotro-
pies.  One family of laminates that exhibits all of these
anisotropies is the (70p /0q)T unbalanced, unsymmetric
laminates with p > 0 and q ≠ 0. 

Values of the orthotropy parameter O and the
anisotropy parameter A0  for (70p /0q)T unbalanced, un-
symmetric laminates are shown in Figs. 20 and 21, re-
spectively, for the nine material systems considered
herein and as a function of the percentage of seventy-deg
plies.  The results in Fig. 20 show a large variation in O
with the percentage of seventy-deg plies for most of the
material systems.  The results also show a large variation
in O with material system for the laminates that are dom-
inated by zero-deg plies (less than approximately 20%
seventy-deg plies).  Values of O vary the most for the
laminates made of P-100/3502 pitch-epoxy material,
with values that range from approximately 0.5 to 3.  

The results in Fig. 21 also show a substantial varia-
tion in  A0 with the percentage of seventy-deg plies for
most of the material systems, and a large variation with
material system for laminates with between approxi-
mately 45% and 100% seventy-deg plies.   The largest
overall variation in A0 with percentage of seventy-deg
plies is exhibited by the laminates made of the P-100/
3502 pitch-epoxy material and the smallest variation is
exhibited by the laminates made of boron-aluminum ma-
terial.  Values of A0 range from approximately 1.4 to
0.95, which correspond to the maximum and minimum
points, respectively, on the curve for the P-100/3502
pitch-epoxy material.

Results for the first-order correction factor C1  were
also obtained for (70p /0q)T unbalanced, unsymmetric
laminates made of the nine material systems considered
herein, but are not included in the present paper.  These
results also show a substantial, relative variation in C1

with the percentage of seventy-deg plies, but overall the
magnitude of  C1 is less than approximately 0.25 for the
P-100/3502 pitch-epoxy material and less than 0.1 for
the other materials.  These results indicate that the con-
tribution of C1 to the anisotropy factor defined by Eq.
(33) is negligible for the upper bound of thin-shell theory

that is  given by h/R = 1/20, which means that  A  A0.
Thus, the results in Fig. 21 suggest that in some cases
glecting the shell-wall anisotropy may overestimate t
bending boundary-layer decay length and in other cas
may underestimate the decay length.  The insignifican
of C1 also means that the contribution of the flexur
anisotropy to the coupling of the anisotropies is neglig
ble.  The insignificance of C1  is clarified in Fig. 22 for
laminates made of P-100/3502 pitch-epoxy mater
(gray curves) and of IM7/5260 graphite-bismaleimid
material (black curves).  The solid black and gray curv
are for the upper bound of thinness given by h/R = 1/2
The finely dashed curves shown in the figure correspo
to 90%-decay lengths for which the anisotropy is n
glected.  In contrast, the solid curves include the effec
the shell anisotropy and are shown for values of µ = 0, 1,
and 1.5.  Moreover, the solid curves for µ = 1 and 1.5 are
based on the exact solution that uses Eq. (20b).  The 
responding curves that are based on the approximate
mula for the anisotropy parameter that is given by E
(33) are identical.  The solid curves indicate a negligib
effect of varying µ, which verifies that  A  A0 and im-
plies that all three shell theories yield essentially t
same results for the (70p /0q)T unbalanced, unsymmetric
laminates.  In addition, the results show that neglect
the shell wall anisotropy, for the most part, underes
mates the bending boundary-layer decay length, by
much as approximately 16% and 6% for shell walls ma
of P-100/3502 pitch-epoxy and IM7/5260 graphite-bi
maleimide materials, respectively, and with approx
mately 20% seventy-deg plies.  In addition, the results
Fig. 22 show that neglecting the shell wall anisotropy u
derestimates the bending boundary-layer decay leng
by as much as approximately 31% and 20% for sh
walls made of P-100/3502 pitch-epoxy and IM7/526
graphite-bismaleimide materials, respectively, and w
approximately 100% seventy-deg plies.  There is only
very small range shown in Fig. 22 where neglecting t
shell wall anisotropy overestimates the bending boun
ary-layer decay length, and for this region, the effect
negligible.

Concluding Remarks

An analytical study of the attenuation of bendin
boundary layers in both balanced and unbalanced, s
metrically and unsymmetrically laminated-composit
thin cylindrical shells has been presented for nine co
temporary material systems.  The analysis is based on
linear Sanders-Koiter shell equations and contains 
Love-Kirchhoff shell equations and Donnell’s equation
as special cases.  With this analysis, two nondimensio
parameters have been indentified that characterize 
quantify the effects of laminate orthotropy and lamina

≈

≈
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in a very general and encompassing manner.  The anisot-
ropy parameter includes the effects of anisotropy in the
form of coupling between pure bending and twisting that
appears in many symmetric laminates to some extent,
coupling between extension and  shear that is present in
unbalanced laminates, and coupling between membrane
and bending action that is present in unsymmetric lami-
nates.   

A substantial number of structural design technolo-
gy results for the bending boundary-layer decay length
have been presented for a wide range of laminated-com-
posite shell structures that should be useful additions to
the structural designer’s collection of preliminary design
tools.  Moreover, the analysis and results should provide
additional physical insight into the fundamental behavior
of general laminated composite shell structures and pro-
vide a common basis for assessing bending boundary-
layer attenuation for the vast range of laminate construc-
tions that are possible.  Furthermore, the results should
be useful for the design of specimens for material char-
acterization tests, for instrumenting structural verifica-
tion tests, and for defining finite-element meshes.  For all
the laminate constructions considered in the present
study, the results show that the differences between re-
sults that were obtained with the Sanders-Koiter shell
equations, the Love-Kirchhoff shell equations,  and Don-
nell’s equations are negligible.  The results also show
that the effect of anisotropy in the form of coupling be-
tween pure bending and twisting has a neglible effect on
the size of the bending boundary-layer attenuation length
of the balanced, symmetrically laminated cylinders con-
sidered.  Moreover, the results show that the coupling of
the membrane and flexural anisotropy and the anisotropy
caused by unsymmetric lamination is generally unimpor-
tant with regards to the primary effect of the individual
shell anisotropies on the bending boundary-layer decay
length.  The only exception encountered was for unbal-
anced, unsymmetrically laminated cylinders for which
coupling of the membrane anisotropy and the anisotropy
caused by unsymmetric lamination is a primary effect, as
expected.   The results also show that in some cases ne-
glecting the shell anisotropy results in underestimating
the bending boundary-layer decay length and in other
cases it results in an overestimation.

Appendix A:  Sanders-Koiter Equations

The linear Sanders-Koiter shell equations16,17 are
presented in this appendix for a right-circular cylinder
with a radius that is given by R.  For these equations, x
and θ denote the axial and circumferential coordinates,
respectively.  First, the equilibrium equations are pre-
sented, then the kinematic equations and the constitutive

equations are presented.  Last, the boundary conditi
are given for a complete right-circular cylinder at a
edge that is given by a constant value of the axial coor
nate, x.

Equilibrium Equations

The equilibrium equations are given in a form sim
ilar to those found in Ref. 22; that is,

         (A1)

     (A2)

              (A3)

                 (A4)

                 (A5)

where  Nx, Nθ, and Nxθ are the membrane stress resu
ants; Qx and Qθ are the transverse shear-stress resultan
Mx, Mθ, and Mxθ are the bending stress resultants; qx, qθ,
and qn  are the applied surface tractions; and c1 and c2
are constants that identify the equations of other sh
theories that are considered herein.  In particular, 
Sanders-Koiter equations are given by  c1 = c2 = 1 and
the Love-Kirchhoff equations are give by c1 = 1 and c2 =
0.  Donnell’s equations are given by c1 = c2 = 0.  This
convention is used throughout the present study.

Kinematic Equations

The kinematic equations are given by

                                 (A6)

                           (A7)

                          (A8)

                            (A9)

                       (A10)

                        (A11)

  ∂Nx

∂x + 1
R

∂Nxθ

∂θ –
c2

2R2

∂Mxθ

∂θ + qx = 0

  ∂Nxθ

∂x + 1
R

∂Nθ

∂θ +
c1

RQθ +
c2

2R
∂Mxθ

∂x + qθ = 0

  ∂Qx

∂x + 1
R

∂Qθ

∂θ –
Nθ

R + qn = 0

  ∂Mx

∂x + 1
R

∂Mxθ

∂θ – Qx = 0

  ∂Mxθ

∂x + 1
R

∂Mθ

∂θ – Qθ = 0

  εx
o = ∂u

∂x

  εθ
o = 1

R
∂v
∂θ +w

R

  γxθ
o = ∂v

∂x + 1
R

∂u
∂θ

  β x
o = – ∂w

∂x

  β θ
o =

c1

Rv – 1
R

∂w
∂θ

  β n
o =

c2

2
∂v
∂x – 1

R
∂u
∂θ
13 
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                        (A12)

            (A13)

              

 (A14)

where u, v, and w are the axial, circumferential, and nor-
mal displacements of a point of the shell middle surface;

, , and  are the membrane strains; , , and

 are the rotations; and , , and  are the bend-
ing strains.  The displacement w is positive when it is
outward from the cylinder reference surface.

Constitutive Equations

The isothermal constitutive equations are given in
matrix form by

       (A15)

where the subscripted A, B, and D terms of the matrix
are the stiffnesses of laminated composite shells that are
obtained from the Love-Kirchhoff shell theory.   More-
over, the constitutive terms in Eq. (A15) are identical to
those for laminated-composite plates that are given in
Ref. 18, p. 198.

Boundary Conditions

The boundary conditions for an edge that is defined
by a constant value of the axial coordinate x are given by

     or                (A16)

   or       (A17)

     or         (A18)

      or                (A19)

where , , and  are applied edge displac

ments; is an applied edge rotation; and 

, , and are applied edge loads.

Appendix B: Equations for Axisymmetry

The linear Sanders-Koiter shell equations that a
presented in Appendix A for a right-circular cylinde
with a radius R are specialized in this appendix for t
case of axisymmetric behavior.  For these equations
and θ denote the axial and circumferential coordinate
respectively.  The specialization to axial symmetry 
conducted by eliminating all terms in the equations 
Appendix A that are differentiatied with respect to th
circumferential coordinate, θ.  First, the equilibrium
equations, the kinematic equations, and the constitut
equations are presented.  Then, the boundary conditi
are given for a complete right-circular cylinder at a
edge that is given by a constant value of the axial coor
nate, x.  Last, the axisymmetric equations are manipu
ed into a single ordinary differential equation in terms 
the normal displacement w(x).

Equilibrium Equations

The equilibrium equations for axisymmetric behav
ior are given by

                         (B1)

        (B2)

                    (B3)

                           (B4)

                           (B5)

where the membrane stress resultants Nx, Nθ, and Nxθ;
the transverse shear-stress resultants Qx and Qθ; the
bending stress resultants Mx, Mθ, and Mxθ; and the
applied surface tractions qx, qθ, and qn are functions of
only the axial coordinate, x.

Kinematic Equations

The kinematic equations are given by

  κx
o =

∂β x
o

∂x = – ∂2w
∂x2

  κθ
o = 1

R
∂β θ

o

∂θ =
c1

R2
∂v
∂θ – 1

R2
∂2w
∂θ2

  
κxθ

o = 1
R

∂β x
o

∂θ + β n
o +

∂β θ
o

∂x

  = – 2
R

∂2w
∂x∂θ + 1

R c1 + 1
2c2

∂v
∂x –

c2

2R2
∂u
∂θ

εx
o εθ

o
  γxθ

o β x
o β θ

o

  β n
o κx

o κθ
o

  κxθ
o

  
Nx

Nθ

Nxθ

Mx

Mθ

Mxθ

=

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

εx
o

εθ
o

γxθ
o

κx
o

κθ
o

κxθ
o

  Nx = Nx(θ)   u = u(θ)

  Nxθ + 1
R c1 + 1

2c2 Mxθ = T(θ)   v = v(θ)

  Qx + 1
R

∂Mxθ

∂θ = V(θ)   w = w(θ)

  Mx = Mx(θ)   β x
o = β(θ)

  u(θ)   v(θ)   w(θ)

  β(θ)   Nx(θ)

  T(θ)   V(θ)   Mx(θ)

 dNx

dx + qx(x) = 0

  dNxθ

dx +
c1

RQθ +
c2

2R
dMxθ

dx + qθ(x) = 0

  dQx

dx –
Nθ

R + qn(x) = 0

 dMx

dx – Qx = 0

  dMxθ

dx – Qθ = 0
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                                 (B6)

                                  (B7)

                                  (B8)

                               (B9)

                              (B10)

                                 (B11)

                          (B12)

                               (B13)

            (B14)

where the middle-surface displacements u, v, and w; the

membrane strains , , and ; the rotations , ,

and ; and the bending strains   and  are func-
tions of only the axial coordinate, x.

Constitutive Equations

The isothermal constitutive equations reduce to

       (B15)

where the subscripted A, B, and D terms of the matrix 
are the usual constitutive terms of classical Love-Kirch-
hoff-type laminated composite shell theory or classical 
laminated plate theory (e.g., see p. 198 of Ref. 18).

Boundary Conditions

The boundary conditions for an edge that is defined
by a constant value of the axial coordinate x are given by

     or                    (B16)

   or          (B17)

     or                     (B18)

      or                    (B19)

where the applied edge displacements , , and ; 

applied edge rotation ; and the applied edge loads 

, , and  are all constants.

Bending Boundary-Layer Equation

The bending boundary-layer equation is obtain
by first noting that integration of Eq. (B1) yields

              (B20)

where C is a constant of integration that is determin
from the boundary condition given by Eq. (B16).  Nex
Eqs. (B2) and (B5) are combined to get

      (B21)

For convenience, the parameter

                        (B22)

is introduced such that the Sanders-Koiter equations 

given by  and the Love-Kirchhoff equations ar

given by  µ = 1.  Donnell’s equations are given by µ = 0.
Similarly, the function

                    (B23)

is introduced so that Eq. (B21) becomes

                       (B24)

and the corresponding boundary condition given by E
(B17) becomes

    or                         (B25)

Integration of Eq. (B24) yields

               (B26)

  εx
o = du

dx

  εθ
o = w

R

  γxθ
o = dv

dx

  β x
o = – dw

dx

  β θ
o =

c1

Rv

  β n
o =

c2

2
dv
dx

  κx
o =

dβ x
o

dx = – d2w
dx2

  κθ
o = 0

  κxθ
o = 1

Rβ n
o +

dβ θ
o

dx = 1
R c1 + 1

2c2
dv
dx

εx
o εθ

o
 γxθ

o β x
o

 β θ
o

  β n
o κx

o
  κxθ

o

  
Nx

Nθ

Nxθ

Mx

Mθ

Mxθ

=

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

εx
o

εθ
o

γxθ
o

κx
o

0
κxθ

o

 Nx = Nx  u = u

  Nxθ + 1
R c1 + 1

2c2 Mxθ = T  v = v

 Qx = V  w = w

 Mx = Mx   β x
o = β

u v w

β  Nx

T V  Mx

  Nx = – qx dx + C ≡ N(x)

  dNxθ

dx + 1
R c1 + 1

2c2

dMxθ

dx + qθ(x) = 0

  µ = c1 + 1
2c2

  µ = 3
2

  T(x) = Nxθ +
µ
RMxθ

  dT
dx + qθ(x) = 0

 T = T  v = v

  T = – qθ dx + C ≡ T(x)
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where C is a constant of integration that is determined
from the boundary condition given by Eq. (B25).  Next,
Eqs. (B3) and (B4) are combined to give

                (B27)

The next step in the analysis is the simplification of
the constitutive equations.  First, by using Eqs. (B8) and
(B22), Eq. (B14) is expressed as

                           (B28)

By using Eqs. (B23) and (B28), the constitutive equa-
tions are expressed as

         (B29)

and

        (B30)

where

                  (B31)

                   (B32)

        (B33)

                 (B34)

                 (B35)

The motivation for writing the constitutive equations in
this form is that the matrix equation given by Eq. (B29)
is the only part of the of the full constitutive equations
that appear in the strain energy density function, which
is used in the present paper to determine the correspond-
ing positive-definiteness conditions.  With these simpli-
fied constitutive equations and Eqs. (B6) - (B8) and
(B12), Eq. (B20) is expressed as

    (B36)

and Eq. (B26)  is expressed as

     (B37)

Equations (B36) and (B37) are then solved for  a

 to get

    

  (B38)

  

  (B39)

Equation (B39) indicates that the circumferential di
placement  v(x)  becomes uncoupled from the axial d
placement  u(x)  and the normal displacement  w(

when , which implies that  A16 = A26

= B16 = B26 = D16 = 0.  In addition, the constitutive equa
tion, Eq. (B29), indicates that Nx, Nθ, and Mx become

uncoupled from the torsional, shear strain  wh

, and that , that is defined by Eq

(B23), becomes uncoupled from , , and .  Fu
thermore, Eq. (B30) indicates that Mθ becomes uncou-

pled from  when , which implies  B26 = D26 =
0.

Next, Eqs. (B38) and (B39) are then substitute
into Eqs. (B6) and (B8), and the resulting expressions 

 and , along with Eqs. (B7) and (B12) are substitu
ed into the constitutive equations, (B29).  This actio
converts the strains and stress resultants in Eq. (B29) 
functions of the displacement w(x).  Substituting the e
pressions for  Nθ  and Mx  into Eq. (B27) yields the bend-
ing boundary-layer equation that is given by

           (B40)

The constant coefficients are given by

  d2Mx

dx2 –
Nθ

R + qn(x) = 0

  κxθ
o =

µ
Rγxθ

o

  Nx

Nθ

T
Mx

=

A11 A12 A16 B11

A12 A22 A26 B12

A16 A26 A66 B16

B11 B12 B16 D11

εx
o

εθ
o

γxθ
o

κx
o

  Mθ = B12εx
o + B22εθ

o + B26γxθ
o + D12κx

o

  A16 = A16 + µ h
R

B16

h

  A26 = A26 + µ h
R

B26

h

  A66 = A66 + 2µ h
R

B66

h + µ2 h
R

2 D66

h2

  B16 = B16 + µ h
R

D16

h

  B26 = B26 + µ h
R

D26

h

  A11
du
dx + A12

w
R + A16

dv
dx – B11

d2w
dx2 – N(x) = 0

  A16
du
dx + A26

w
R + A66

dv
dx – B16

d2w
dx2 – T(x) = 0

 du
dx

 dv
dx

 du
dx =

A 66N(x) – A 16T(x)

A 11A 66 – A 16

2

  
+

A 16A 26 – A 12A 66
w
R + A 66B11 – A 16B16

d2w
dx2

A 11A 66 – A 16

2

 dv
dx =

A 11T(x) – A 16N(x)

A 11A 66 – A 16

2

  
+

A 12A 16 – A 11A 26
w
R + A 11B16 – A 16B11

d2w
dx2

A 11A 66 – A 16

2

 A16 = A26 = B16 = 0

  γxθ
o

 A16 = A26 = B16 = 0 T

εx
o εθ

o κx
o

  γxθ
o

 B26 = 0

 εx
o γxθ

o

  C1
d4w
dx4 + C2

d2w
dx2 + C3w = C4(x)
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         (B41)

  (B42)

  (B43)

The function  is given by

           

             (B44)

These expressions are simplifed further by introducing
the following expressions

 (B45)

 (B46)

 

 (B47)

                            (B48)

                     (B49)

By using Eqs. (B45) - (B49), Eqs. (B41) - (B43) are
expressed as

                            (B50)

                          (B51)

                          (B52)

Similarly, for the case where the second derivatives

 and  are zero valued, Eq. (B44) becomes

         (B53)

The desired form of the bending boundary-layer equ
tion is obtained by dividing Eq. (B40) by  C1; that is,

           (B54)

where the constants S and Q are given by

                   (B55)

                  (B56)

The function P(x) is given by

    (B57)

for the special case when the second derivatives

 and  are zero valued.  The quantity  th
appears in Eqs. (B54) - (B56) is sometimes referred 
in some contexts, as a reduced bending stiffness.12 

Appendix C: Anisotropy-Factor Equations

The first-order approximation of the anisotrop
factor A  that is used herein is given by

                   (C1)

where A0 is the value of Eq. (20b) with  µ = 0  in the
terms with the overbars.  This expression is given by

   (C2)

which is the anisotropy factor that corresponds to Do
nell’s equations.  The terms a22, b21, and  e0  are given by

 
C1 = D11 1 –

A 66B11

2 + A 11B16

2 – 2A 16B11B16

A 11A 66 – A 16

2 D11

 C2 = – 2
RB12

 
– 2

R

A 16A 26 – A 12A 66 B11 + A 12A 16 – A 11A 26 B16

A 11A 66 – A 16

2

 
C3 =

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

R2 A 11A 66 – A 16

2

 C4(x)

 C4(x) = qn(x) +

 A 16A 26 – A 12A 66 N(x) + A 12A 16 – A 11A 26 T(x)

R A 11A 66 – A 16

2

  
+

B11A 66 – A 16B16

d2N
dx2 + A 11B16 – B11A 16

d2T
dx2

A 11A 66 – A 16

2

 a12 =
A 16A 26 – A 12A 66

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 a22 = A 11A 66 – A 16

2

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 a26 =
A 12A 16 – A 11A 26

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 b 21 = – a12B11 + a22B12 + a26B16

  e = 1 –
A66B11

2 + A11B16

2 – 2A16B11B16

A11A66 – A16

2 D11

  C1 = D11e

 C2 = 2
R

b 21

a22

 C3 = 1
R2a22

 N(x)  T(x)

 C4(x) = qn(x) +
a12N(x) + a26T(x)

Ra22

  d4w
dx4 + 4Sd2w

dx2 + 4Qw = P(x)

  S =
C2

4C1

=
b 21

2Ra22D11e

  Q =
C3

4C1

= 1
4R2a22D11e

  P(x) =
C4(x)

C1

=
qn(x)

D11e
+

a12N(x) + a26T(x)

Ra22D11e

 N(x)  T(x)   D11e

   A ≈ A 0 1 + µ C 1
h
R

  
A 0 =

(A11A22 – A12
2 )

A11

a22e0

1/4

1 –
b 21

a22D11 e0

–1/2
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              (C6)

         (C7)

The term C1 is a first-order correction to the results that
correspond to Donnell’s equations and is given by

  (C8)

where

  (C9)

        (C10)

  (C11)

       (C12)

      (C13)

and

   (C14)

   (C15)

   (C16)

    (C17)

       (C18)

                 (C19)

  (C20)

    (C21)

     (C22)

Special Cases for  A0  and  C1

Simplifications to  A0  and  C1  are presented below
for unbalanced and balanced, symmetric laminates a
for balanced, unsymmetric laminates, that include t
subclasses of general antisymmetric laminates, antisy
metric cross-ply laminates, and antisymmetric angle-p
laminates.

Unbalanced and balanced, symmetric laminat
For unbalanced, symmetric laminates, A16 ≠ 0, A26 ≠ 0,
and B11 = B12 = B22 = B16 = B26 = B66 = 0.  For this special
case,

   (C23)

which agrees with the corresponding equations given
Reuter4, and

 a12 =
A 16A 26 – A 12A 66

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 a22 = A 11A 66 – A 16

2

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 a26 =
A 12A 16 – A 11A 26

A 11A 22 – A 12

2 A 66 – A 11A 26

2 – A 22A 16

2 + 2A 12A 16A 26

 b 21 = – a12B11 + a22B12 + a26B16

  e0 = 1 –
A66B11

2 + A11B16
2 – 2A16B11B16

A11A66 – A16
2 D11

  
C 1 =

a22D11e0 a22e1 + a122e0 + 2a22 b 121e0 – b 21e1 – 2a122b 21e0

4a22e0 a22D11e0 – b 21

  e1 =
2 A 16B11 – A 11B16

A 11A 66 – A 16
2

2
D11h

D16 A 11A 66 – A 16
2 +

 
– B16 B11A 66 + A 11B66 + A 16 A 11B66 + B16

2

 a112 = B16f16 + B26f26 + B66f66

A 11A 22 – A 12
2 A 66 – A 11A 26

2 – A 22A 16
2 + 2A 12A 16A 26

2

h

 a122 = – 2 B16g16 + B26g26 + B66g66

A 11A 22 – A 12
2 A 66 – A 11A 26

2 – A 22A 16
2 + 2A 12A 16A 26

2

h

 a126 = B16h 16 + B26h 26 + B66h 66

A 11A 22 – A 12
2 A 66 – A 11A 26

2 – A 22A 16
2 + 2A 12A 16A 26

2

h

 
b 121 = – a112B11 + a122B12 + a126B16 +

a26D16

h

 f16 = A26 A16
2 A22 – A11A26

2 +

 A66 A26 A11A22 + A12
2 – 2A12A22A16

 f26 = A16 A26
2 A11 – A22A16

2 +

 A66 A16 A11A22 + A12
2 – 2A11A12A26

 f66 = 2 A12A16 – A11A26 A16A22 – A12A26

 g16 = A12A16 – A11A26 A16A26 – A12A66

 g26 = A12A16 – A11A26 A11A66 – A16
2

 g66 = A12A16 – A11A26

2

 h 16 = A12A66 A12A66 – A12
2 + A11A26 A12A26 – A16A22

 + A16A22 A12A16 – A11A26

 h 26 = – A11A66 A11A22 – A12
2 + A16

2 A11A22 – 2A12
2

 + A11A26 2A12A16 – A11A26

 h 66 = 2 A11A26 – A12A16 A11A22 – A12
2

  
A 0 =

A 11A 22 – A 12
2 A 11A 66 – A 16

2

A 11 A 11A 22 – A 12
2 A 66 – A 11A 26

2 – A 22A 16
2 + 2A 12A 16A 26

1/4

  
C 1 =

D16 A 12A 16 – A 11A 26

2h D11 A 11A 66 – A 16
2

1/2 A 11A 22 – A 12
2 A 66
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 (C24)

For balanced, symmetric laminates, A16 = A26 = 0  in
addition to the subscripted B-matrix constitutive terms.
For this special case, A0  = 1  and  C1  = 0.

Balanced, unsymmetric laminates.  For balanced,
unsymmetric laminates, A16 = A26 = 0, which yields the
following simplified expressions

                  (C25)

           (C26)

                           (C27)

    (C28)

  (C29)

For the subclass of balanced, antisymmetric laminates,
D16 = D26 = 0 in addition to the shear-extensional cou-
pling terms, which yields the following simplification

                (C30)

that is applied to Eq. (C29).  For the subclass of (bal-
anced) antisymmetric cross-ply laminates, B12 = B16 =
B26 = B66 = 0 , B22 = -B11, and  D16 = D26 = 0 in addition
to the shear-extensional coupling terms.  For this special
case, C1 = 0 and

   (C31)

where

                    (C32)

For the subclass of balanced, antisymmetric angle-
ply laminates, B11 = B12 = B22 = B66 = 0  and D16 = D26 =

0 in addition to the shear-extensional coupling term

For this special case,     where

                      (C33)

which agrees with the corresponding equations given
Reuter4, and

     (C34)

Further simplifications can be made to Eqs. (C3
and (C32) for  [0/90/.../90]  antisymmetric-cross-ply
laminate shell walls with an even number of layers th
have identical material properties.  For these laminat
the plies are specially orthotropic and their principal m
terial directions are oriented at 0 deg and 90 deg to 
cylinder axes in an alternating manner.  In particular, t
major principal axes of the odd-numbered and eve
numbered plies are aligned with the x- and θ-axis, re-
spectively, with the first ply in the stacking sequence l
cated at the inner surface of the cylinder.  Moreover, 
odd-numbered plies have the same thickness and 
even-numbered plies have the same thickness, but th
two thicknesses are, in general, different.  The lamin
stiffnesses are given in Ref. 18 (see pp. 224-226) in te
of the number of layers N, the thickness ratio M, the ra

of the principal elastic moduli , for which  0 < F

1, and the reduced, plane-stress lamina stiffness
The thickness ratio is defined by

          (C35)

where t(k)  denotes the thickness of the kth ply and

   (C36)

is the total laminate thickness.  For the antisymmet
cross-ply laminates, t(1) and t(2) are the thicknesses of the
0-deg and 90-deg layers, respectively, and are deno
herein by  t0  and  t90, respectively.  Substituting the non
zero laminate stiffness expressions for this class of a
symmetric cross-ply laminates that are given in Ref. 
into Eqs. (21), (C31), and (C32) yields

 – A 11A 26
2 – A 22A 16

2 + 2A 12A 16A 26

–1/2

  e0 = 1 –
B11

2

A11D11

–
B16

2

A66D11

   Λ =
A11B12 – A12B11

A11D11(A11A22 – A12
2 )e0

   A 0 = e0

4
1 + Λ –1/2

  
e1 = – 2

B16

A66h
D16

D11

–
B11B16

A11D11

–
B16B66

A66D11

   
C 1 = 1

4(1+Λ)
e1

e0

(1+2Λ) +
2B16 A 11B26 – A 12B16

A 66h A 11D11 A 11A 22 – A 12
2 e0

  e1 =
2B16

2

A66D11h
B11

A11

+
B66

A66

  
A 0 = e0

4
1 –

A12B11

A11D11(A11A22 – A12
2 )e0

–1/2

  e0 = 1 –
B11

2

A11D11

  A 0 = e0

4

  e0 = 1 –
B16

2

A66D11

  
C 1 =

B16 A11B26 – A12B16

2A66h A11D11 A11A22 – A12
2 e0

 F =
E2

E1

≤

  M = t(k)Σ
k = 1, 3, ...

N – 1

÷ t(k)Σ
k = 2, 4, ...

N

=
t(1)

t(2)

  h = t(k)Σ
k = 1, 3, ...

N – 1

+ t(k)Σ
k = 2, 4, ...

N

= N
2 t(1) + t(2)
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   (C37)

       (C38a)

where

  (C38b)

    (C39)

               (C40)

and  ν12  is the major Poisson’s ratio.  For the special, but 
practical, case of regular antisymmetric cross-ply lami-
nation, all plies have the same thickness and Eqs. (C37) 
- (C39) reduce to

                  (C41)

 (C42)

                   (C43)
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Table 1: Lamina properties.

Lamina 
property*

Material Systems

Boron-
Al

S-glass-
epoxy

Kevlar 49-
epoxy

IM7/
5260

AS4/
3502

AS4/
3501-6

Boron-
epoxy

IM7/
PETI-5

P-100/
3502

E1, Msi 33 7.5 11.02 22.1 18.5 20.01 29.58 20.35 53.5

E2, Msi 21 1.7 0.8 1.457 1.64 1.30 2.68 1.16 0.73

ν12 0.23 0.25 0.34 0.258 0.30 0.30 0.23 0.29 0.31

G12, Msi 7.0 0.80 0.33 0.860 0.87 1.03 0.81 0.61 0.76

α1 x 106/oF 3.2 3.5 -2.22 0.0125 0.25 -0.167 3.38 -0.14 -0.64

α2 x 106/oF 11.0 11.0 43.89 14.91 16.2 15.6 16.83 16.85 17.2

Table 2: Comparison of results for specially orthotropic materials with Ref. 6.

Material Systems* E2/E1 ν12 O Re(p),  

Ref. 6‡

Re(p),    

Present study‡

Boron-epoxy 0.100 0.30 1.782 2.796-2.805 2.806

Glass-epoxy 0.333 0.25 1.323 3.757-3.779 3.779

Graphite-epoxy 0.250 0.25 2.516 1.984-1.987 1.987
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Fig. 1  Nondimensional 90%-decay length for symmetrically and unsymmetrically laminated cylinders, as a 
function of laminate orthotropy.
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Fig. 3  Effect of lamina material properties on nondimensional orthotropy parameter for single-ply, homogeneous, 
specially orthotropic laminates (0.2 ≤ ν12 ≤  0.35).  
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Fig. 4  Effect of lamina material properties on nondimensional orthotropy parameter for  [(±φ)m]s,  [(+φ)2m]s, and  
[(±φ)m]T  laminates (m = 1, 2, ...).
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Fig. 13  Effect of stacking sequence number on nondimensional anisotropy parameter for [(±φ)m]T laminates
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Fig. 14  Effect of lamina material properties on nondimensional first-order correction factor for  [±φ]T  laminates. 
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Fig. 15  Effect of stacking sequence number on nondimensional first-order correction factor for [(±φ)m]T  laminates
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Fig. 16  Nondimensional 90%-decay length for  [±φ]T  laminates made of IM7/5260 graphite-bismaleimide and 
P-100/3502 pitch-epoxy material (h/R = 1/20).
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Fig. 17  Effect of lamina material properties on nondimensional orthotropy parameter for  [0p /90q]T  laminates.  
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Fig. 18  Effect of lamina material properties on nondimensional anisotropy parameter for  [0p /90q]T  laminates.  
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Fig. 19  Nondimensional 90%-decay length for  [0p /90q]T  laminates made of IM7/5260 graphite-bismaleimide and 
P-100/3502 pitch-epoxy material (h/R = 1/20).
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Fig. 20  Effect of lamina material properties on nondimensional orthotropy parameter for  [70p /0q]T  laminates.  
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Fig. 21  Effect of lamina material properties on nondimensional anisotropy parameter for  [70p /0q]T  laminates.  
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Fig. 22  Nondimensional 90%-decay length for  [70p /0q]T  laminates made of IM7/5260 graphite-bismaleimide and 
P-100/3502 pitch-epoxy material (h/R = 1/20).
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	Table 1: Lamina properties.

	E1, Msi
	33
	7.5
	11.02
	22.1
	18.5
	20.01
	29.58
	20.35
	53.5
	E2, Msi
	21
	1.7
	0.8
	1.457
	1.64
	1.30
	2.68
	1.16
	0.73
	n12
	0.23
	0.25
	0.34
	0.258
	0.30
	0.30
	0.23
	0.29
	0.31
	G12, Msi
	7.0
	0.80
	0.33
	0.860
	0.87
	1.03
	0.81
	0.61
	0.76
	a1 x 106/oF
	3.2
	3.5
	-2.22
	0.0125
	0.25
	-0.167
	3.38
	-0.14
	-0.64
	a2 x 106/oF
	11.0
	11.0
	43.89
	14.91
	16.2
	15.6
	16.83
	16.85
	17.2
	Table 2: Comparison of results for specially orthotropic materials with Ref. 6.

	Boron-epoxy
	0.100
	0.30
	1.782
	2.796-2.805
	2.806
	Glass-epoxy
	0.333
	0.25
	1.323
	3.757-3.779
	3.779
	Graphite-epoxy
	0.250
	0.25
	2.516
	1.984-1.987
	1.987



